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Neural Network for Image Segmentation
Alexei N. Skourikhine*, Lakshman Prasad, Bernd R. Schlei

Los Alamos National Laboratory, MS E541, Los Alamos, NM, 87545, USA

 ABSTRACT

Image analysis is an important requirement of many artificial intelligence systems. Though great effort has
been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is
natural to turn to mammalian vision systems for guidance because they are the best known performers of
visual tasks. The pulse-coupled neural network (PCNN) model of the cat visual cortex has proven to have
interesting properties for image processing. This article describes the PCNN application to the processing
of images of heterogeneous materials; specifically PCNN is applied to image denoising and image
segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior
to segmentation. We use PCNN for both smoothing and segmentation. Combining smoothing and
segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose
optimal selection can be difficult and can vary even for the same problem. This approach makes image
processing based on PCNN more automatic in our application and also results in better segmentation.

Keywords: pulse-coupled neural network, PCNN, image processing, segmentation, smoothing, granular
materials.

1. IMAGE PROCESSING WITH PULSE-COUPLED NEURAL NETWORKS

A PCNN is a biologically inspired algorithm for image processing. 1,2. It is to a very large extent based on
Eckhorn’s model of the cat visual cortex.3,4. The typical neuron of a PCNN is shown in Fig. 1. The
equations for a single iteration of the PCNN are

where S is the input signal, F is the feed, L is the link, U is the internal activity, Y is the pulse output, and
Θ is the dynamic threshold. The weight matrices M and W are local interconnections and β is the linking
constant. I is the inhibition term that is determined by the total activity of the network. The output values of
all neurons are summed up, negated, and fed back to each neuron of the neural network.

The basic simplified structure of the pulse-coupled neural network processor for a two-dimensional input
image is shown in Fig. 2. An input gray-scale image is composed of M×N pixels. This image can be
represented as an array of M×N normalized intensity values. Then the array is fed in at the M×N inputs of
PCNN. If initially all neurons are set to 0, the input results in activation of all of the neurons at a first
iteration. The threshold of each neuron, Θ, significantly increases when the neuron fires, then the threshold
value decays with time. When the threshold falls below the respective neuron’s potential (U), the neuron
fires again, which again raises the threshold. The process continues creating binary pulses for each neuron.
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Fig. 1. The basic PCNN neuron.

While this process goes on, neurons encourage their neighbors to fire simultaneously in a way that is
supported through interconnections. The firing neurons begin to communicate with their nearest neighbors,
which in turn communicate with their neighbors. The result is an autowave that expands from active
regions. Thus, if a group of neurons is close to firing, one neuron can trigger the group. Due to linking
between neurons, the pulsing activity of invoked neurons leads to the synchronization between groups of
neurons corresponding to subregions of the image that have similar properties and produces a temporal
series of binary images. This synchronization results in image segmentation.

The success of the application of PCNNs to image segmentation depends on the proper setting of the
various parameters of the network, such as the linking parameter β, thresholds Θ, decay time constants τ,
and the interconnection matrices M (mijkl) and W (wijkl). Proper setting of the parameters is especially
important when intensity significantly varies across a single segment. In this case, segmentation can result
in different sequences of binary images depending on the network’s settings. Decreasing this type of
dependence of the results on the parameters settings can make PCNN image processing more efficient. We
decrease this dependance by combining smoothing and segmentation. First, we perform PCNN-based
smoothing, then we perform segmentation using PCNN.

Fig. 2. Image processing using a pulse-coupled neural network.



PCNN smoothing is achieved through iterated modification of the original intensity levels of an input
image. Adjustment of a pixel’s intensity depends on the temporal history of how neighboring pixels fire. If
a given pixel does not fire simultaneously with the majority of its neighbors, then its intensity is examined.
If a pixel fires after the majority of its neighborhood, its intensity is increased, otherwise it is decreased by
a small value. This results in both a reduction of the noise contained in the image and the number of pixel
intensities represented in the image. Segmentation that follows smoothing has no differences from the
standard procedure described earlier.

However, smoothing and segmentation by themselves do not produce the segmentation we want. The
desired outcome is achieved by adding PCNN-output binary images until we stop the addition manually.
As a result, the only point where manual intervention is necessary is an evaluation of binary images to
select the best one. If a priori information about application is available (for example, proportions of
different elements in composite), then the whole process of image segmentation can be automated.

2. SEGMENTATION OF HETEROGENEOUS  MATERIALS

We consider a specific example from material science. Material scientists which are interested in the
modeling of cellular solids (foams) very often perform hydrodynamic model calculations to learn more
about highly dynamic, cyclic, and non-equilibrium-inducing loading conditions involving large strains and
high strain rates. 5 The initial conditions of the hydrodynamic model calculations require very accurate
input data from, e.g., micrographs, which are two-dimensional black-and-white images of cross sections of
such materials. Details such as cell dimensions, shapes, ellipticities, orientations, strut/wall thicknesses,
material defects, etc. can only be extracted from high-level image processing algorithms reliably if a proper
quality of low-level image processing, i.e., smoothing and segmentation, is performed. For the sake of
illustration, we shall demonstrate image smoothing and segmentation for a polymeric foam as shown in
Fig. 3. 5

Fig. 3. Original image.



3. RESULTS

The overall segmentation approach we use to segment images of materials consists of three stages. First, an
original image is denoised using PCNN smoothing. Second, the denoised image is segmented using PCNN.
Finally, the output binary images produced by segmentation are added until an image of quality that is
acceptable for a given application is obtained.

The original image after applying PCNN-based smoothing is shown in Fig. 4. The visible difference
between the smoothed image and the original image is not too drastic. However, it is obvious from their
histograms, shown in Fig. 5, that the spatial variance that existed in the original image was reduced.
Smoothing can be stopped after selected criteria are met. In our case we stopped smoothing after
performing 100 PCNN iterations over the whole image. Smoothing used parameter settings of β = 0.01, αL
= 1.0, αΘ = 5.0, VF = 0.5, VL = 0.2, VΘ = 1.0, and there was no leaky integrator in the feeding channel of
PCNN. The corresponding linking weights template is
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We checked the influence of global inhibition on the quality of segmentation. It was found it did not impact
the results. The only difference was in the ordering and grouping of output binary images. 6 Also, variation
in setting of the parameters for a PCNN segmentation (we varied β) did not produce different results,
indicating that this kind of variation could be eliminated in our specific application problem.

Fig. 6 shows the statistics for the number of adjustments of pixel intensities over time for one of the PCNN
smoothing runs. We can see that it is almost a monotonic decrease. This decrease provides a possible
criterion for halting smoothing that is different from the one we had; for example, the number of
adjustments relative to the size of the image could be used as a criterion to halt smoothing.

Fig. 4. Original image after smoothing.



Fig. 5. Histograms of the original image (shown in Fig. 3) and the smoothed image (shown in Fig. 4).

Fig. 6. Number of pixel intensity adjustments over smoothing iterations.
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Fig. 7. Original image segmentation using PCNN. No preliminary smoothing was applied.

Fig. 8. Segmentation after smoothing was applied to the original image.



Fig. 9. Subregion of the original image shown in
Fig. 3.

Fig. 10. Subregion of the smoothed image shown in
Fig. 4.

Fig. 11. Segmentation results for the region shown
in Fig. 9. No smoothing is applied.

Fig. 12. Segmentation results for the region shown
in Fig. 10. Smoothing is applied before
segmentation.



The results corresponding to the segmentation without preliminary smoothing and with preliminary
smoothing are shown in Fig. 7 and Fig. 8. Figures 10, 11, 12 show the results of processing one small
subregion from the original image, shown in Fig. 9. As we can see from the images, the PCNN smoothing
provides less noisy segmentation and does not result in blurring the image.

Segmentation is followed by application of a geometric filtering algorithm, which extract statistics of
material features to support automatic optical analysis and evaluation of material structure. 7,8.

4. CONCLUSIONS

We have shown that the pulse-coupled neural network is a useful tool for image preprocessing such as
image denoising and segmentation. Integration of smoothing, segmentation, and addition of output binary
images enabled us to automate the process of processing images of granular materials. Manual intervention
was only necessary to select which image among those generated was the best. The segmentation by itself
was performed automatically. Further research will explore comparison of PCNN smoothing aimed at N-
ary segmentation and wavelets segmentation.
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